Kinetics of cisplatin binding to cellular DNA and modulations by thiol-blocking agents and thiol drugs.
نویسندگان
چکیده
DNA platination by cisplatin (CDDP) was investigated in peripheral blood mononuclear cells and ovarian cancer cells using atomic absorption spectroscopy. Plots showing the amount of platinum (Pt) bound to DNA versus the molar concentration of cisplatin in the incubation medium ([CDDP]) were nonlinear. For [CDDP] < about 5 microM, the amount of Pt bound to DNA increased slowly with added drug. However, for larger [CDDP], the slope of the plot increased significantly. To study the role of thiols in affecting cisplatin binding to DNA, cells were treated with N-ethylmaleimide, which modifies thiol groups, rendering them incapable of binding cisplatin. Analysis using high-pressure liquid chromatography showed that approximately 99% of cellular glutathione was modified by N-ethylmaleimide. A plot of the amount of Pt bound to DNA versus [CDDP] for thiol-blocked cells is linear, with a slope similar to that of unblocked cells at high [CDDP]. Neither S-2-(3 aminopropylamino)ethanethiol (WR-1065) nor mesna, when added at clinically achievable concentrations (i.e., < approximately 300 microM), affected DNA platination. However, DNA platination was totally abolished by millimolar concentrations of the drug thiols (approximately 1.25 mM WR-1065 or approximately 5 mM mesna). Thus, the data show that endogenous thiols intercept cellular cisplatin, but this mechanism is less important at high [CDDP]. Moreover, therapeutic concentrations of drug thiols do not significantly affect DNA platination. A simple model that reproduces the experimental results of the amount of cisplatin binding to DNA as a function of [CDDP], time, and thiol content is proposed. The model takes into account passage of cisplatin and thiols through the cell membrane, binding of cisplatin to cellular thiols, and platination of DNA.
منابع مشابه
Interaction of Cisplatin with Cellular Macromolecules: A Fourier Transform Infrared Spectroscopy Study
Platinum is a metallic element, which may react with our cellular component through its involvement in cancer chemotherapy medications. Cisplatin is one of the most useful antineoplastic drugs against human ovarian carcinoma, which has the central element of platinum in its structure. The nature of chemical interaction between platinum and cellular macromolecules is yet to be understood. We exa...
متن کاملPredicting of Effective Dose as Biomarker for Cytotoxicity Using Partial Least Square-Fourier Transform Infrared Spectroscopy (PLS_FTIR)
Toxicity bioassays are important tools to determine biological effects of chemical agents on species. The questions remained on, what effects have been imposed on each of the different molecular site of cells by chemical exposure and how to find a pattern for chemical toxicity. To address the questions, HepG2 cell lines were exposed to the different concentrations of cisplatin for 24 hours to r...
متن کاملInteraction of Cisplatin with Cellular Macromolecules: A Fourier Transform Infrared Spectroscopy Study
Platinum is a metallic element, which may react with our cellular component through its involvement in cancer chemotherapy medications. Cisplatin is one of the most useful antineoplastic drugs against human ovarian carcinoma, which has the central element of platinum in its structure. The nature of chemical interaction between platinum and cellular macromolecules is yet to be understood. We exa...
متن کاملPredicting of Effective Dose as Biomarker for Cytotoxicity Using Partial Least Square-Fourier Transform Infrared Spectroscopy (PLS_FTIR)
Toxicity bioassays are important tools to determine biological effects of chemical agents on species. The questions remained on, what effects have been imposed on each of the different molecular site of cells by chemical exposure and how to find a pattern for chemical toxicity. To address the questions, HepG2 cell lines were exposed to the different concentrations of cisplatin for 24 hours to r...
متن کاملEffects of Buthionine Sulfoximine Treatment on Cellular Glutathione Levels and Cytotoxicities of Cisplatin, Carboplatin and Radiation in Human Stomach and Ovarian Cancer Cell Lines*
Chemotherapy failure remains a significant medical problem in the treatment of neoplastic disease and is thought to be due to many different factors including membrane transport, p-glycoprotein in multidrug resistance, glutathione and its related enzymes, topoisomerase II and DNA repair. Glutathione is a major constituent of non-protein thiol and participates in detoxification of chemotherapy a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 30 2 شماره
صفحات -
تاریخ انتشار 2002